in Redox biology by Yan Gong, Lele Yu, Lili Xia, Jilu Jin, Yue Lang, Shini Feng, Wei Feng, Fuxue Chen, Yu Chen
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by diverse clinical presentations, often associated with dysregulated oxidative stress mechanisms leading to heightened production of reactive oxygen species (ROS) in the brain. Due to its multifactorial etiology, effective therapeutic approaches for ASD remain challenging to ascertain. This work engineers Prussian blue nanoparticles (PB NPs) designed to mimic the enzymatic functions of key antioxidants such as superoxide dismutase, glutathione peroxidase, catalase, and peroxidase. PB NPs effectively scavenge ROS and restore cellular redox homeostasis. These nanoparticles attenuate neuronal apoptosis by reducing activation of apoptotic markers like cleaved caspase-3 and B-cell lymphoma-2 associated X protein, while enhancing the expression of anti-apoptotic protein B-cell lymphoma-2. Furthermore, PB NPs mitigate neuroinflammation by downregulating pro-inflammatory cytokines and upregulating anti-inflammatory cytokines, thereby alleviating glial cell hyperactivity. In preclinical ASD models, PB NPs significantly improve social interaction deficits, diminish anxiety-like behaviors, and enhance cognitive functions. The therapeutic application of PB NPs represents a notable advancement in ASD treatment, offering a novel approach for clinical intervention aimed at enhancing the quality of life for individuals affected by ASD.