in International journal of biological macromolecules by Shuai Zhao, Jingwen Luo, Pingping Xu, Jingwei Zeng, Guangbo Yan, Fang Yu, Liwei Qin, Cheng Zhang, Peng Li, Mengxing Cai, Wuxiang Mao, Chin-Yu Chen, Wanping Chen, Rui Han, Fei Wang, Yang Wang, Lixin Ma
The efficient degradation of pathogenic proteins, particularly proliferating cell nuclear antigen (PCNA) and B-cell lymphoma 6 protein (BCL6), is crucial for treating various diseases related to cancer. As key biological macromolecules, PCNA plays a critical role in DNA replication and repair, while BCL6 acts as a transcriptional repressor involved in B-cell lymphoma. To enhance the efficiency and specificity of protein degradation, we developed a RS80E-based bioPROTACs system that consists of truncated variants of Ring-B-boxed coiled-coil (RBCC) domains (RS80E) with improved degradation efficiency fused to an AI-driven binder/nanobody targeting specific antigens. Combining state-of-the-art methodologies such as ProteinMPNN, RFdiffusion, AlphaFold3, AlphaFold2, and HADDOCK, we identified binders for PCNA and predicted spatial interrelationships. Employing fragment-based and alanine scanning methods, we designed nanobodies targeting PCNA and BCL6 by combinatorially designing CDR3 and grafting them onto nanobody scaffolds. Significantly, our results demonstrate the utility of bioPROTACs in degrading PCNA and BCL6, thereby activating p53 and promoting apoptosis. This highlights the therapeutic potential of targeting PCNA and BCL6 degradation and lays the groundwork for developing PCNA and BCL6-degrading therapeutics. In summary, our system offers a modular and rapid pathway for exploration other intractable therapeutic targets, and emphasizes the importance of interdisciplinary methods in advancing therapeutic interventions.