in Molecular cell by Sarah L Breves, Dafne Campigli Di Giammartino, James Nicholson, Stefano Cirigliano, Syed Raza Mahmood, Uk Jin Lee, Alexander Martinez-Fundichely, Johannes Jungverdorben, Richa Singhania, Sandy Rajkumar, Raphael Kirou, Lorenz Studer, Ekta Khurana, Alexander Polyzos, Howard A Fine, Effie Apostolou
Dysregulation of enhancer-promoter communication in the three-dimensional (3D) nucleus is increasingly recognized as a potential driver of oncogenic programs. Here, we profiled the 3D enhancer-promoter networks of patient-derived glioblastoma stem cells to identify central regulatory nodes. We focused on hyperconnected 3D hubs and demonstrated that hub-interacting genes exhibit high and coordinated expression at the single-cell level and are associated with oncogenic programs that distinguish glioblastoma from low-grade glioma. Epigenetic silencing of a recurrent hub-with an uncharacterized role in glioblastoma-was sufficient to cause downregulation of hub-connected genes, shifts in transcriptional states, and reduced clonogenicity. Integration of datasets across 16 cancers identified "universal" and cancer-type-specific 3D hubs that enrich for oncogenic programs and factors associated with worse prognosis. Genetic alterations could explain only a small fraction of hub hyperconnectivity and increased activity. Overall, our study provides strong support for the potential central role of 3D regulatory hubs in controlling oncogenic programs and properties.