in Cancer discovery by Alessio Ugolini, Alessandra De Leo, Xiaoqing Yu, Fabio Scirocchi, Xiaoxian Liu, Barbara Peixoto, Delia Scocozza, Angelica Pace, Michela Perego, Alessandro Gardini, Luca D'Angelo, James K C Liu, Arnold B Etame, Aurelia Rughetti, Marianna Nuti, Antonio Santoro, Michael A Vogelbaum, Jose R Conejo-Garcia, Paulo C Rodriguez, Filippo Veglia
Despite functional heterogeneity, high frequency of intratumoral neutrophils predicts poor clinical outcomes. The tumor microenvironment reprograms neutrophils into immunosuppressive subsets that hinder anti-cancer immunity, thereby contributing to tumor growth and resistance to immunotherapies. However, the mechanisms underlying neutrophil reprogramming remain elusive. Here, we report that the immunosuppressive ability of brain tumor-infiltrating neutrophils was restricted to a highly glycolytic and long-lived subset expressing CD71, which acquired immunosuppressive properties in response to hypoxia. Mechanistically, hypoxia boosted glucose metabolism in CD71+neutrophils, leading to high lactate production. Lactate caused histone lactylation, which subsequently regulated arginase-1 expression, required for T cell suppression. Targeting histone lactylation with the anti-epileptic drug isosafrole blocked CD71+neutrophil immunosuppressive ability, delayed tumor progression and sensitized brain tumors to immunotherapy. A distinctive gene signature characterizing immunosuppressive CD71+neutrophils correlated with adverse clinical outcomes across diverse human malignancies. This study identifies histone lactylation as a potential therapeutic target to counteract neutrophil-induced immunosuppression within tumors.