in Nature by Tara Barron, Belgin Yalçın, Minhui Su, Youkyeong Gloria Byun, Avishai Gavish, Kiarash Shamardani, Haojun Xu, Lijun Ni, Neeraj Soni, Vilina Mehta, Samin Maleki Jahan, Yoon Seok Kim, Kathryn R Taylor, Michael B Keough, Michael A Quezada, Anna C Geraghty, Rebecca Mancusi, Linh Thuy Vo, Enrique Herrera Castañeda, Pamelyn J Woo, Claudia K Petritsch, Hannes Vogel, Kai Kaila, Michelle Monje
High-grade gliomas (HGGs) are the leading cause of brain cancer-related death. HGGs include clinically, anatomically and molecularly distinct subtypes that stratify into diffuse midline gliomas (DMGs), such as H3K27M-altered diffuse intrinsic pontine glioma, and hemispheric HGGs, such as IDH wild-type glioblastoma. Neuronal activity drives glioma progression through paracrine signallingand neuron-to-glioma synapses. Glutamatergic AMPA receptor-dependent synapses between neurons and glioma cells have been demonstrated in paediatricand adulthigh-grade gliomas, and early work has suggested heterogeneous glioma GABAergic responses. However, neuron-to-glioma synapses mediated by neurotransmitters other than glutamate remain understudied. Using whole-cell patch-clamp electrophysiology, in vivo optogenetics and patient-derived orthotopic xenograft models, we identified functional, tumour-promoting GABAergic neuron-to-glioma synapses mediated by GABAreceptors in DMGs. GABAergic input has a depolarizing effect on DMG cells due to NKCC1 chloride transporter function and consequently elevated intracellular chloride concentration in DMG malignant cells. As membrane depolarization increases glioma proliferation, we found that the activity of GABAergic interneurons promotes DMG proliferation in vivo. The benzodiazepine lorazepam enhances GABA-mediated signalling, increases glioma proliferation and growth, and shortens survival in DMG patient-derived orthotopic xenograft models. By contrast, only minimal depolarizing GABAergic currents were found in hemispheric HGGs and lorazepam did not influence the growth rate of hemispheric glioblastoma xenografts. Together, these findings uncover growth-promoting GABAergic synaptic communication between GABAergic neurons and H3K27M-altered DMG cells, underscoring a tumour subtype-specific mechanism of brain cancer neurophysiology.