in European journal of medicinal chemistry by Peng He, Haiyan Li, Zhenyu Yang, Rui Zhang, Qijun Ye, Ta Deng, Wenwen Li, Shucheng He, Guangxin Dong, Zhou Yu, Yi Li
Activating mutations in the epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) are significant oncogenic drivers in non-small cell lung cancer (NSCLC) patients. Despite several approved EGFR and ALK inhibitors, drug-resistant mutations pose a major challenge. Especially, there is currently no approved EGFR inhibitors targeting the C797S mutation, a refractory mutation resistant to the third-generation EGFR inhibitors. Furthermore, an increasing number of patients with EGFR/ALK co-mutations have been identified in clinical practice, yet there are no effective therapeutic options available for them. In this study, we report the discovery and preclinical evaluations of a new small-molecule drug candidate, DA-0157, which is capable of overcoming EGFR drug-resistant mutation C797S and EGFR/ALK co-mutations. DA-0157 demonstrated excellent in vitro efficacy, significantly inhibiting various EGFRmutants resistant to the third-generation EGFR inhibitors, ALK rearrangements, and EGFR/ALK co-mutations. In vivo studies revealed that DA-0157 substantially inhibited tumor growth in the LD1-0025-200717 EGFRPDX model (40 mg/kg/d, TGI: 98.3 %), Ba/F3-EML-4-ALK-L1196 M CDX model (40 mg/kg/d, TGI: 125.2 %), and NCI-H1975 EGFR& NCI-H3122 (EML4-ALK) dual-side implantation CDX model (40 mg/kg/d, TGI: 89.5 % & 113.9 %). DA-0157 demonstrates favorable pharmacokinetic properties and safety. Currently, DA-0157 (DAJH-1050766) is undergoing Phase I/II clinical trials.