in International journal of pharmaceutics by Yubo Wang, Yong Zhou, Jinling Wang, Lu Zhang, Chen Liu, Ding Guo, Yanlin Yu, Roumei Ye, Yun Wang, Bing Xu, Yiming Luo, Dengyue Chen
The limited selectivity and high systemic toxicity of traditional chemotherapy hinder its efficacy in treating diffuse large B-cell lymphoma (DLBCL). The combination of sonodynamic therapy (SDT) with chemotherapy has emerged as a novel strategy for cancer treatment, aiming to improve therapeutic outcomes and reduce systemic toxicity. However, challenges such as elevated drug clearance rates and non-selecitivity remain to be resolved. This study has developed a biocompatible nanomedicine delivery system, PA-HM@DOX/ICG, employing hollow mesoporous silica nanoparticles (HMSNs) as the nanocarrier. The nanomedicine incorporates the chemotherapeutic agent doxorubicin (DOX) along with the sonosensitizer indocyanine green (ICG) within its encapsulation, and undergoes additional surface modification using lipid-nucleic acid conjugates (DSPE-PEG-AS1411) to facilitate active targeted delivery. In vitro cellular experiments have validated that PA-HM@DOX/ICG can specifically recognize and be internalized by SU-DHL-4 lymphoma cells due to the overexpression of nucleolin on their surface. The synergistic effects of DOX-induced DNA damage and reactive oxygen species (ROS) generated by ultrasound-activated ICG induce apoptosis in these cells. Furthermore, PA-HM@DOX/ICG displays minimal toxicity towards LO2 normal hepatocytes, indicating a favorable biosafety profile. In vivo animal studies have shown that PA-HM@DOX/ICG effectively accumulates in tumor sites in mice through both the enhanced permeability and retention (EPR) effect and nucleolin-mediated targeting. Under ultrasound irradiation, PA-HM@DOX/ICG significantly inhibits tumor growth. This study introduces a nanoplatform that integrates chemotherapy with sonodynamic therapy, offering a novel approach for the efficient treatment of DLBCL.