in Science (New York, N.Y.) by Christina Jackson, Christopher Cherry, Sadhana Bom, Arbor G Dykema, Rulin Wang, Elizabeth Thompson, Ming Zhang, Runzhe Li, Zhicheng Ji, Wenpin Hou, Wentao Zhan, Hao Zhang, John Choi, Ajay Vaghasia, Landon Hansen, William Wang, Brandon Bergsneider, Kate M Jones, Fausto Rodriguez, Jon Weingart, Calixto-Hope Lucas, Jonathan Powell, Jennifer Elisseeff, Srinivasan Yegnasubramanian, Michael Lim, Chetan Bettegowda, Hongkai Ji, Drew Pardoll
The role of glioma-associated myeloid cells in tumor growth and immune evasion remains poorly understood. We performed single-cell RNA sequencing of immune and tumor cells from 33 gliomas, identifying two distinct myeloid-derived suppressor cell (MDSC) populations in isocitrate dehydrogenase-wild-type (IDT-WT) glioblastoma: an early progenitor MDSC (E-MDSC) population with up-regulation of metabolic and hypoxia pathways and a monocytic MDSC (M-MDSC) population. Spatial transcriptomics demonstrated that E-MDSCs geographically colocalize with metabolic stem-like tumor cells in the pseudopalisading region. Ligand-receptor analysis revealed cross-talk between these cells, where glioma stem-like cells produce chemokines attracting E-MDSCs, which in turn produce growth factors for the tumor cells. This interaction is absent in IDH-mutant gliomas, associated with hypermethylation and repressed gene expression of MDSC-attracting chemokines. Our study elucidates specific MDSCs that may facilitate glioblastoma progression and mediate tumor immunosuppression.