in Molecular therapy : the journal of the American Society of Gene Therapy by Lisa Nieland, Anne B Vrijmoet, Isabelle W Jetten, David Rufino-Ramos, Alexandra J E M de Reus, Koen Breyne, Benjamin P Kleinstiver, Casey A Maguire, Marike L D Broekman, Xandra O Breakefield, Erik R Abels
Glioblastoma (GB), the most aggressive tumor of the central nervous system (CNS), has poor patient outcomes with limited effective treatments available. MicroRNA-21 (miR-21(a)) is a known oncogene, abundantly expressed in many cancer types. MiR-21(a) promotes GB progression, and lack of miR-21(a) reduces the tumorigenic potential. Here, we propose a single adeno-associated virus (AAV) vector strategy targeting mmu-miR-21a using the Staphylococcus aureus Cas9 ortholog (SaCas9) guided by a single-guide RNA (sgRNA). Our results demonstrate that AAV8 is a well-suited AAV serotype to express SaCas9-KKH/sgRNA at the tumor site in an orthotopic GB model. The SaCas9-KKH induced a genomic deletion, resulting in lowered mmu-miR-21a levels in the brain, leading to reduced tumor growth and improved overall survival. In this study, we demonstrated that disruption of genomic mmu-miR-21a with a single AAV vector influenced glioma development resulting in beneficial anti-tumor outcomes in GB-bearing mice.